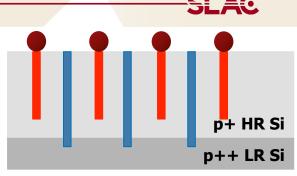
US Sensor Efforts for ITk

Presentation Date: July 7, 2015

Chris Kenney


Inner Pixels

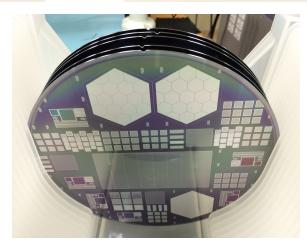
- Due to radiation damage viable options appear to be limited to 3D diode sensors or CMOS sensors bonded to a front-end ASIC
- Suitable CMOS sensors for the inner pixels are being actively pursued in Europe, but not in the US
- 3D diode sensors are being worked on at SLAC (Stonybrook) well integrated with the global community
- Scope is at the prototype level
- Technology will be transferred to foundries

Inner Pixels – 3D Issues and Plans

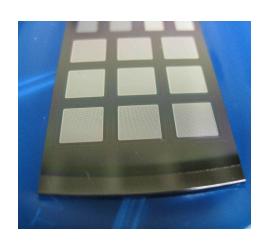
- Back side contacts for ease of assembly
- Thin sensors
 - Reduce occupancy at high eta
 - Maintain active fill factor going to smaller pixels
 - Reduce mass
 - Mechanical robustness
- 3D-diode sensors are being worked on by SLAC
 - Thin sensors < 150 microns
 - Use of bias wafer
 - Variable depths
- Sally and Martin at UNM collaborate on testing

FBK & Trento

Inner Pixels – Plans

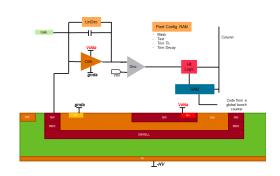

- Production of thin 3D wafers underway
 - FE-I4, RD53-1, RD53-2, etc.
 - Thicknesses of 75 μm, 125 μm, and 175 μm
- Intend to bump bond at SLAC
- Production manufacturing by proven foundries:
 CNM, FBK, SINTEF, etc.
- Biggest challenge may be full-scale production

Mid Pixels


- Hybrid with planar sensors bonded to FE-IC
- Thin run is underway at SLAC
 - 75 μm thick
 - Matched to FE-I4, RD53

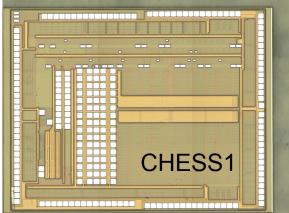
- Led by FNAL
- Establish a US sensor vendor for HEP
- SLAC (J. Segal) contributed the sensor fabrication process
- First batch done and works ok
- 200 mm wafers

200-mm FZ wafers!


Outer Pixels

- Either hybrid design similar to IBL or Monolithic CMOS Sensors
- US is actively pursuing Monolithic CMOS Sensors
- 6th and possibly 5th layers targeted
- Cost is the driver
- Institutions involved: SLAC, LBNL, Bonn
- "COOL" chip is under design (CmOs for Outer Layers)
- Involves integrated circuit and sensor design
- Will need extensive help in the testing of the prototype parts
- Irradiations and testing with UNM

Outer Pixels



- Challenges
 - Signal charge collection
 - Radiation tolerance
 - Fitting complex circuitry inside 50 x 250 μm² pixel
 - Short time scale
- COOL 1 expect to submit in the fall
 - Using LFoundry as fabrication partner
 - Full-wafer run, multiple substrate resistivities
 - Second COOL 2 submission in early 2016
- LBNL working with Semiconductor Creations via SBIR
 - Using ON Semiconductor as fabrication partner

Strips

- Options are diode arrays wire bonded to front-end ASICs or CMOS sensors
- Very aggressive program to demonstrate suitability of CMOS sensors in US (also in UK)
- Would reduce system costs
- Improve spatial resolution
- Main challenges:
 - Short time frame
 - Radiation tolerance
 - Signal collection
- Central team working on design of the CMOS sensors is UCSC, SLAC, and KIT
- Large global effort involved in testing of prototypes

Strips

- CHESS1 chip submitted in fall, 2014
 - Extensively tested

- CHESS2 under design
 - Full-wafer run
 - Multiple substrate resistivities
 - Implements full functionality in reduced area
 - Submission expected late summer, 2015
 - Testing and irradiation campaign can't have too much help

Production

Strip CMOS sensors

AMS has capacity of 160,000 200mm wafers per annum ATLAS needs on the order of 10% of this So need maybe 2 months of the fab over a 18 month period

Pixel CMOS Sensors

LFoundry states a capacity of 40,000 200mm wafers per month ATLAS would need on the order of 500 wafers per outer layer So a few days worth of capacity ...

Quality control and assembly will dominate the construction time

Production

- For CMOS options
- Develop testing procedure
- Partner with local company to identify KGD at wafer level
- For diode array sensors transfer to industry
- Help with quality monitoring

Deliverables

- 3D and Thin Planar Sensors
 - Prototype parts distributed for testing
 - Establish process for foundaries
 - Bump bond to relevant ASICs
- CMOS Strips and Pixels
 - Functional Integrated circuit design
 - Established radiation tolerance
 - Parts for beam tests
- If selected US should
 - Act as interface to foundries
 - Lead wafer-level testing and singulation
 - Play significant role at module level